Select Page

Taking a Close Look at Bacteria

by | Oct 22, 2018 | Blog

The image on the left shows an example of superresolved images of H-NS proteins in individual E. coli. The image on the right shows examples of trajectories of H-NS proteins. 

Yong Wang, assistant professor of physics, and graduate student Asmaa Sadoon have been studying how molecules travel through bacterial cytoplasm in order to understand more about how these tiny organisms function. Using new high-tech tools, they have been able to observe certain processes inside live bacteria for the first time. They published their results in the journal Physical Review E.

The researchers used a combination of super-resolution fluorescence microscopy and a technique called single-particle tracking to study how a type of protein called H-NS moves through the cytoplasm of E. coli cells. The researchers chose this protein because it interacts with both proteins and DNA, and it helps regulate gene expression in the bacteria. Understanding bacterial gene expression could lead to new techniques to mitigate bacterial resistance to antibiotics.

In this study, the researchers learned new information about this protein, and about the properties of bacterial cytoplasm. Wang describes cytoplasm as “a thick soup of proteins, DNA, and various other molecules.” Because bacteria don’t have transport systems, such as digestive or circulatory systems, they depend on the diffusion of molecules through this soup for the processes that keep them alive.

By tracking the movement of H-NS through the cytoplasm of the E. coli, the researchers were able to calculate the viscoelasticity of the cytoplasm. They found that the bacterial “soup” doesn’t behave the same way a homogenous protein solution does.

Previous research, which used homogenous solutions studied in vitro, observed that in these solutions, both elasticity and viscosity decreased over time. In other words, the solutions became both thinner and softer. In actual bacteria, however, Wang and Sadoon observed that, after a certain time-scale, the viscosity, or thickness, of the cytoplasm flattens out, so the bacterial cytoplasm gets softer without getting thinner.

“Our findings are expected to fundamentally change the way bacterial cytoplasm is viewed,” the researchers explained in the paper. “unlike a simple viscous or viscoelastic fluid that current models of bacterial processes typically consider, the bacterial cytoplasm behaves differently at different time scales in terms of mechanical properties, which is expected to impact various interactions among small molecules, proteins and DNA/RNA molecules inside bacteria, as well as bacterial interactions with other species, such as bacteriophages.”

This work was supported by the University of Arkansas, the Arkansas Biosciences Institute (Grants No. ABI-0189, No. ABI-0226, and No. ABI-0277), and the National Science Foundation (Grant No. 1826642).

About The Author

Camilla Shumaker is the director of science and research communications. She graduated Summa Cum Laude with a bachelor's degree in English from the University of Arkansas in 2001. She also holds a Master of Fine Arts in Creative Writing from the U of A. From 2010 through 2017, she was the director of communications in the U of A College of Engineering. Camilla can be reached at camillas@uark.edu or (479) 575-7422.

University of Arkansas logo

Looking for an expert?

The University of Arkansas Campus Experts website is a searchable database of experts who can talk to the media on current events.

Trending Topics:
Elections and Voter Turnout
Midterm Elections
Arkansas Ballot Issue 1
Immigration Politics

Mary Shelley’s Frankenstein: Getting to the Heart of What Makes Us Human

More Episodes of Short Talks from the Hill

Short Talks From the Hill logo

The University Relations Science and Research Team

Camilla Shumaker
director of science and research communications
479-575-7422, camillas@uark.edu

Matt McGowan
science and research writer
479-575-4246, dmcgowa@uark.edu

Robert Whitby
science and research writer
479-387-0720, whitby@uark.edu

DeLani Bartlette
feature writer
479-575-5709, drbartl@uark.edu

Connect with Us