Study of Ocean Upwelling Off the California Coast Uses Data from Land and Sea to Gauge Ocean Health

Study of Ocean Upwelling Off the California Coast  Uses Data from Land and Sea to Gauge Ocean Health

Researchers used tree-ring chronologies to reconstruct 600 years of data on ocean upwelling along the West Coast of North America to find indicators of the ocean’s health.

David Stahle

David Stahle

Upwelling is the rise of cold waters carrying nutrients from deep in the ocean to warmer zones near the surface. Scientists monitor coastal upwelling because it is an important control on the productivity of critical marine ecosystems. But their efforts have been impeded by lack of data data from previous centuries.

The study, published in Science, demonstrated that the recent levels of increased variability happened only twice in the past 600 years and are associated with weak upwelling, which has a negative impact on marine productivity.

David Stahle co-authored the study and produced tree-ring chronologies of blue oak trees that depend on precipitation caused by the same atmospheric conditions that cause winter upwelling. Several other scientists contributed to the study, which was led by Bryan Black, assistant professor of marine science at the University of Texas Marine Science Institute.

The research documented long-term changes in the variability of marine upwelling in the California Current system, which during the winter lifts deep, cold and fertile oceanic waters into sunlit surface layers of the ocean. This process fuels vast phytoplankton blooms that provide food for fish, seabirds and marine mammals. The atmospheric conditions that control winter upwelling also control onshore precipitation and tree growth by guiding the storm track into or around the western United States.

For more than 30 years, Stahle has taken core samples from trees and examined the chronology of their rings to reconstruct past climate and help explain the societal impact of drought. This study of marine productivity expands on the scientific applications of his research – focusing on the flow of the Sacramento River, San Francisco Bay salinity and ancient blue oak trees in California, which have already been used to develop high-quality reconstructions of precipitation.

In addition to the tree-ring chronologies, the analyses also used direct measurements of phytoplankton productivity and the growth of marine birds and fish.

The researchers also relied on three indices of physical variables to characterize winter climate caused by the California Current: the Northern Oscillation Index, a new index of climate variability based on differences of sea level pressure in the north Pacific; the Bakun Upwelling Index, the standard measure of the volume of water that upwells along the coast; and sea level measurements at San Francisco.

“The annual growth data gleaned from fish, seabirds and blue oak trees are highly correlated and demonstrate a remarkable degree of connectivity across the coastal interface,” Stahle said. “Taken together, the data not only provide a long historical context for interpreting modern variability in observational records, but may also inform decisions about managing coastal ecosystems.”

About The Author

University Relations Science and Research Team

University Relations Science and Research Team

Matt McGowan
science and research writer

Robert Whitby
science and research writer

Looking for an expert?

The University of Arkansas Campus Experts website is a searchable database of experts who can talk to the media on current events.

Trending Topics:
State and local economy
Environmental economics
Immigration politics

More on University of Arkansas Research

Visit the office of Research & Innovation for a complete list research awards and more information on research policies, support and analytics.

Connect with Us