Select Page

‘Optically Pumped’ Laser Closer to Improving Processing Speed of Sensors

 

Imagine creating a material for the digital information highway that allows a fast lane of laser light that zips data past the traditional silicon chips.

A multi-institutional team of researchers, led by University of Arkansas engineering professor Shui-Qing “Fisher” Yu and a leading Arkansas semiconductor equipment manufacturer, have made significant improvements to a new kind of laser, a semiconducting device that is injected with light, similar to an injection of electrical current. This “optically pumped” laser, which is made of germanium tin grown on silicon substrates, could lead to faster micro-processing speed at much lower cost.

The new findings, reported in ACS Photonics, a journal of the American Chemical Society, demonstrated that the most recent version of this type of laser is capable of covering a broader wavelength range, from 2 to 3 micrometers, while using a lower lasing threshold and higher operation temperature – 180 Kelvin, or minus 135 Farenheit – which means less power consumption.

The researchers fabricated a laser capable of covering a wavelength range from 2 to 3 micrometers, which means potentially more capacity to transmit data. Photo provided by the researchers. Appeared originally in ACS Photonics.

The alloy germanium tin is a promising semiconducting material that can be easily integrated into electronic circuits, such as those found in computer chips and sensors. The material could lead to the development of low-cost, lightweight, compact and low-power consuming electronic components that use light for information transmission and sensing.

Germanium tin harnesses efficient emission of light, a feature that silicon, the standard semiconductor for computer chips, cannot do. In recent years, materials scientists and engineers, including Yu and several of his colleagues on this project, have focused on growing germanium tin on silicon substrates to build an optoelectronics “superchip” that can transmit data much faster than current chips. In 2016, Yu and his colleagues reported the fabrication of their first-generation, optically pumped laser.

The researchers first achieved a lasing operations temperature up to 110 Kelvin. The most recent temperature achieved by their laser is 180 Kelvin, or minus 135 degrees Farenheit, the highest reported for a germanium tin laser thus far.

Broader wavelength range means potentially more capacity to transmit data, Yu said. A lower lasing threshold and higher operation temperature facilitate less power consumption, which keeps costs down and helps with design simplicity. Yu said these improvements indicate the device is closer to practical application.

Yu attributed the superior laser performance to unique epitaxial growth approaches the researchers developed based on newly discovered methods of growing the material. Epitaxy is the process of depositing layers, or wafers, of semiconducting materials onto a crystalline substrate.

“The results reported in this work show a major advance toward laser sources for integrated photonics,” Yu said.

Yu and his academic colleagues at the University of Arkansas at Pine Bluff, Wilkes University in Pennsylvania, Dartmouth College in New Hampshire and the University of Massachusetts Boston collaborated with Arktonics LLC, an Arkansas-based startup company that is a leading semiconductor equipment manufacturer.

This research is supported by the Air Force Small Business Innovation Research program, the Air Force Office of Scientific Research and the National Science Foundation.

Shui-Qing “Fisher” Yu

Shui-Qing “Fisher” Yu

associate professor of electrical engineering

Shui-Qing “Fisher” Yu is an associate professor of electrical engineering. He received his bachelor’s and master’s degrees in electronics from Peking University in 1997 and 2000, respectively, and his doctorate in electrical engineering from Arizona State University in 2005. His research focuses on semiconductor optoelectronic devices such as lasers, photo detectors, THz devices and renewable energy devices.

 

About The Author

A former newspaper reporter, Matt McGowan writes about research in the College of Engineering, Sam M. Walton College of Business, School of Law and other areas. He is the editor of Short Talks From the Hill, a podcast of the University of Arkansas. Reach him at 479-575-4246, or dmcgowa@uark.edu.

University of Arkansas logo

Looking for an expert?

The University of Arkansas Campus Experts website is a searchable database of experts who can talk to the media on current events.

Trending Topics:
Cellphone privacy
Net Neutrality
Immigration politics
Mars

Joshua Youngblood discusses the library’s Special Collections

More Episodes of Short Talks from the Hill

Short Talks From the Hill logo

The University Relations Science and Research Team

Camilla Shumaker
director of science and research communications
479-575-7422, camillas@uark.edu

Matt McGowan
science and research writer
479-575-4246, dmcgowa@uark.edu

Robert Whitby
science and research writer
479-387-0720, whitby@uark.edu

DeLani Bartlette
feature writer
479-575-5709, dbartl@uark.edu

Connect with Us