Select Page

Mutant Bacteria Become Microscopic Motors

As technical devices become smaller, basic processes like fluid flow become more difficult. University of Arkansas researcher Steve Tung is creating a novel solution to this problem by incorporating living bacteria into microelectromechanical systems (MEMS) to form living motors for pumps and valves. These tiny bioMEMS devices could be used in systems for drug delivery or DNA sequencing.

“It is hard to move fluid on a micro scale because it takes a lot of pressure,” explained Tung, associate professor of mechanical engineering. “Current systems are expensive and inefficient, requiring high voltage or very good seals.”

MEMS devices are machines so small they cannot be seen by the unaided human eye. With gears no bigger than a grain of pollen, they range in size from micrometers to a millimeter. MEMS combine electrical and mechanical components into an integrated micro device or systems that can function individually or in groups to sense, control and actuate larger devices.

The tiny devices have a big impact on both the consumer and defense industries. The market for MEMS devices was estimated at more than $8 billion in 2001, and it is growing rapidly.

BioMEMS use a specific type of bacteria, which has a tendency to attach itself to a surface by one of its many flagella, the long filaments that protrude from its surface. Bacteria use the whip-like motion of their flagella to move about. While each flagellum normally turns counter-clockwise about 80 percent of the time, it is possible to introduce a mutation that will lock the motors in one direction of rotation, either clockwise or counterclockwise, according to Tung.

While several MEMS-based pumps have been developed, non-mechanical designs have limited applications because they rely on the electrical properties of the fluids. Mechanical micro pumps require a very large pressure drop, which severely limits their performance.

About The Author

Looking for an expert?

The University of Arkansas Campus Experts website is a searchable database of experts who can talk to the media on current events.

Trending Topics:
Mars
State and local economy
Environmental economics
Immigration politics

‘A House of the Ozarks’; Exploring Arkansas’ Most Important Architect

The University Relations Science and Research Team

Camilla Shumaker
director of science and research communications
479-575-7422, camillas@uark.edu

Matt McGowan
science and research writer
479-575-4246, dmcgowa@uark.edu

Robert Whitby
science and research writer
479-387-0720, whitby@uark.edu

DeLani Bartlette
feature writer
479-575-5709, drbartl@uark.edu

More on University of Arkansas Research

Visit The Office of Research and Innovation for more information on research policies, support and analytics.

a graph showing research expenditure rising from under $120 million to over $170 million over ten years

Connect with Us