“Doping” Helps Control Size Changes in Nanoscale Materials

Researchers want to build nanoscale materials because they promise to be five to 10 times stronger than conventional materials, which could lead to longer-lasting computers and other electronic devices. But these materials lose their attractive properties at high temperatures. To make nanoscale materials retain their size and shape at high temperatures, a little “doping” helps.

When building material atom by atom, temperature increases change the size, shape and properties of the material – an undesirable result for a stable component in a device. Panneer Selvam, professor of civil engineering, graduate students Paul Millett and Shubhra Bansaland Ashok Saxena, dean of the College of Engineering, created a computer model using copper atoms, a material often used to create connections between devices. The researchers introduced an antimony atom to seehow it would affect the properties of the material.

The introduction of a different type of atom, called “doping,” prevents the material from changing shape and size and helps it retain its properties. Unlike an alloy, where researchers might use mixtures of different metal atoms to create more desirable properties, a “dopant” atom remains separate from the other atoms in the metal, migrating to its surfaces or edges.

In the simulation, the antimony atom moved through the material to settle at the grain boundary, the place where one layer of copper atoms ends and another layer begins. Having an atom of a different size from the main material changes the distance between the atoms, which appears to allow the material to retain its shape and size when the temperature changes. The researchers ran the simulation with one antimony atom and 1,800 copper atoms, then ran it again with one antimony atom and 10,000 copper atoms.

“We can design new materials using processes like these,” Selvam said. “This study tells manufacturers thatthey can make these particular types of materials.”

About The Author

University Relations Science and Research Team

University Relations Science and Research Team

Matt McGowan
science and research writer
479-575-4246, dmcgowa@uark.edu

Robert Whitby
science and research writer
479-387-0720, whitby@uark.edu

Looking for an expert?

The University of Arkansas Campus Experts website is a searchable database of experts who can talk to the media on current events.

Trending Topics:
State and local economy
Environmental economics
Immigration politics

More on University of Arkansas Research

Visit the office of Research & Innovation for a complete list research awards and more information on research policies, support and analytics.

Connect with Us